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ABSTRACT

The importance of pandemic forecast cannot be overemphasized. We propose an1

interpretable machine learning approach for forecasting pandemic transmission2

rates by utilizing local mobility statistics and government policies. A calibration3

step is introduced to deal with time-varying relationships between transmission4

rates and predictors. Experimental results demonstrate that our approach is able5

to make accurate two-week ahead predictions of the state-level COVID-19 infec-6

tion trends in the US. Moreover, the models trained by our approach offer insights7

into the spread of COVID-19, such as the association between the baseline trans-8

mission rate and the state-level demographics, the effectiveness of local policies9

in reducing COVID-19 infections, and so on. This work provides a good under-10

standing of COVID-19 evolution with respect to state-level characteristics and can11

potentially inform local policymakers in devising customized response strategies.12

1 INTRODUCTION13

The novel coronavirus disease 2019 (COVID-19) has caused a global pandemic (Zhu et al., 2020)14

and imposes unprecedented challenges on governments and societies around the world. The15

COVID-19 outbreak has two key features: high covertness and high transmissibility (Hao et al.,16

2020), which have pushed some healthcare systems to the brink of collapse and have prompted gov-17

ernments to impose strict policies on physical isolation and travel restrictions so as to mitigate the18

spread of COVID-19. It is hence essential to accurately predict the spread of COVID-19. Such19

research, especially research on local trend forecasting, can provide valuable insights to help local20

authorities prepare their health systems and deploy appropriate policies to mitigate the spread.21

Conventional mathematical modelling of infectious diseases in epidemiology, such as compartmen-22

tal models (Kermack & McKendrick, 1927) and their derivatives (Hao et al., 2020; Croccolo &23

Roman, 2020; Palladino et al., 2020), have been used to reconstruct and forecast transmission dy-24

namics at macro levels. Such a model usually builds an ODE system in a top-down way to ap-25

proximate the epidemic process and estimate model parameters via Monte Carlo methods. Accurate26

domain knowledge is required to design appropriate compartments as well as their relationships.27

It is highly desired to develop models that not only capture dynamic relationships between infectious28

data and population but also make accurate forecasts on the spread of the disease. Oliver et al. (2020)29

argued that human behavior, especially mobility and physical co-presence, was necessary for spread30

analysis during all stages of a pandemic life cycle. Thanks to the pervasive mobile devices, in-time31

mobility statistics can now be obtained at a large scale. In fact, mobility information had been32

successfully used in building epidemiological models for H1N1 flu outbreaks (Balcan et al., 2009).33

This work estimates the reproduction number based on high-quality population mobility patterns, so34

as to make up missing incidence data during the early phase of the H1N1 pandemic. It was able to35
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uncover the seasonal transmission potential of H1N1 in affected countries at the early stage, using36

mobility and transportation data worldwide in addition to the raw count of cases.37

Present work. In this work, we tackle the problem of forecasting the state-level daily new cases of38

COVID-19 in the US. We have developed a machine learning approach to estimate the state-level39

daily transmission rates via robust regression on local mobility statistics and government policies.40

The predicted daily transmission rates can then be accumulated to estimate the daily new cases.41

There are temporal variances in population behaviors (e.g., awareness of conditions relating to pub-42

lic health, compliance to policies, etc.), which, if not considered, can greatly affect the performance43

of our approach. To deal with this problem, we added a novel calibration step to our modeling,44

which assumes the relationships between the transmission rate variable and its predictors remain45

unchanged within a short time window. Empirical studies show that our approach can make sat-46

isfying predictions two weeks into the future for most states. Furthermore, our approach is well47

interpretable and offers insights into the spread of this pandemic. For example, we show that the48

baseline transmission rate, which is indicated as the bias terms in our trained models, is highly49

associated with state-level demographics. In addition, the factors identified to be significant in mak-50

ing predictions are quite consistent across states with how people and governments fight against51

COVID-19.52

2 RELATED WORK53

Previous works on COVID-19 trend prediction can be roughly categorized into the following two54

types.55

Compartmental models. Most recent approaches for COVID-19 spread analysis in epidemiology56

are derivatives of the Susceptible Infectious Recovered (SIR) model (Kermack & McKendrick, 1927;57

Harko et al., 2014), a widely used compartmental model. These approaches group the subjects in58

the system of interest into different population compartments when modeling epidemic spread. The59

dynamics of the system is characterized by the transitions of subjects between compartments, which60

are mathematically expressed as a set of differential equations. Croccolo & Roman (2020) extended61

the SIR model to encompass the effects of lockdown policy and applies it to COVID-19 in the US.62

Palladino et al. (2020) improved the standard SIR model to have a varying diffusion velocity of63

virus, which accounts for nonpharmaceutical interventions, and applied the model to COVID-1964

in Italy. In another work, Hao et al. (2020) proposed a SAPHIRE model that contains seven com-65

partments (susceptible, exposed, presymptomatic infectious, ascertained infectious, unascertained66

infectious, isolation in hospital and removed) to reconstruct transmission dynamics of COVID-19 in67

Wuhan, China between 01/01/2020 and 08/03/2020. This time period was divided into 5 segments68

(Pan et al., 2020), in each of which, the ascertainment rate and transmission rate were assumed to be69

fixed. They also assumed a constant population size and a constant number of travellers in each pe-70

riod. Fernández-Villaverde & Jones (2020) incorporated social distancing into a SIRD (Susceptible-71

Infectious-Recovered-Dead) model that allows a time-varying contact rate so as to capture changes72

associated with social distancing and quarantine policy. They conducted simulations of deaths on73

various regions, such as New York City, Italy, Sweden and Spain. Picchiotti et al. (2020) built74

a SEIR (Susceptible-Exposed-Infected-Recovered) model that considers both personal protective75

measures and mobility restrictions represented as decreasing logistic functions. Chang et al. (2020)76

introduced a metapopulation SEIR model that integrated fine-grained, dynamic mobility networks77

to simulate the spread of SARS-CoV-2 in 10 of the largest US metropolitan statistical areas. The78

IHME COVID-19 Forecasting Team (2020) proposed a deterministic SEIR framework to model79

possible trajectories of COVID-19 infections and the effects of non-pharmaceutical interventions in80

the US at the state level. Dandekar & Barbastathis (2020) augmented the SIR model to include a81

time varying quarantine strength term, which is learned by a neural network from real data. Yang82

et al. (2020b) compared a set of SIR based models (e.g., SIR, SEIR, SEIR-AHQ (Tang et al., 2020),83

SEIR-QD (Peng et al., 2020), SEIR-PO (proposed), etc.) on their forecast abilities using the daily84

reported confirmed infected case data from the China CDC. It is evident that most compartmental85

models focus on dynamics reconstruction and lack the ability to make long-term predictions.86

Machine learning models. Machine learning approaches are very capable of learning complex87

dynamic patterns and relationships directly from data. Punn et al. (2020) and Tuli et al. (2020)88

applied machine learning techniques (e.g., support vector regression, polynomial regression, robust89
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Figure 1: Illustration of the proposed approach for predicting the state-level spread of COVID-
19. The x-axis represent time. The y-axis represents the number of daily cases in logarithmic scale.
Our approach makes ∆t-ahead predictions, starting at time tp, using the state-level daily mobility
statistics and policies. The model calibration is done using the daily confirmed case data within the
time window [tp−k, tp−1].

Weibull fitting, etc.) to fit the nationwide epidemic curve without considering any exogenous factors.90

Yang et al. (2020a) proposed a GRU-based framework for state-level trend prediction, integrating91

the time-varying epidemic information with environmental factors. This work incorporated static92

external factors including local population and age structure while ignoring dynamic population93

behaviors. Kapoor et al. (2020) developed a GNN-based approach for county-level COVID-1994

forecasting, where Google’s human mobility data across all counties in the US are represented as a95

single large-scale spatio-temporal graph. Nevertheless, it did not consider other significant external96

factors (e.g., mandatory or voluntary mask policies). Ramchandani et al. (2020) divided county-level97

weekly rises of confirmed COVID-19 cases into 4 coarse categories and developed DeepCOVIDNet98

based on the DeepFM (Guo et al., 2017) framework that used the demographic statistics and cross-99

county mobility data provided by SafeGraph to make coarse-level predictions.100

3 RESULTS101

We applied our approach to predict the state-level infection trends of COVID-19 in the US. The102

results reveal the interaction between the spread of COVID-19 and the state-level mobility factors103

and restriction policies. In addition, we show that our approach learns the ”bias” linked to state-level104

demographic characteristics.105

3.1 STATE-LEVEL EPIDEMIC FORECASTING MODEL106

Our approach (Figure 1) trains a model in a pure data-driven manner for each state in the US, includ-107

ing the District of Columbia (DC), to make ∆t-ahead prediction of the state-level daily transmission108

rate r̂t+∆t using the state-level daily mobility statistics and government policies at time t. The es-109

timated daily confirmed cases in this state can then be derived from the corresponding estimated110

r̂t in an accumulated manner. Furthermore, a calibration step is proposed to adjust for short-term111

changes in population behaviors. We abuse the term ”state” a little bit to indicate a state or the DC112

throughout the paper. The hyper-parameter ∆t specifies how far in the future a prediction is made,113

and is automatically adjusted for each state. The detailed description of the model is provided in114

Appendix A. The following lists the data used in this work:115

• COVID-19 daily confirmed case data: The latest COVID-19 daily cases data was ob-116

tained from The New York Times1.117

1https://github.com/nytimes/covid-19-data
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• State-level mobility data: The trip-by-distance mobility data is made available by the118

Maryland Transportation Institute and Center for Advanced Transportation Technology119

Laboratory at the University of Maryland2. The daily trips are grouped into 10 categories120

based on the travel distances and another Staying-at-home category indicates the ratio of121

population mostly at home.122

• State restriction policy: The information about state-level restrictions were extracted from123

”The Coronavirus Outbreak” forum on the New York Times3. This work considers the124

mask policy and the restaurant restriction policy.125

• State-level demographic information: This data includes the state-level population den-126

sity information published by the U.S. Census Bureau4, the race structure information (frac-127

tion of 7 different race categories) collected by the COVID Tracking Project5, and the age128

structure information (fraction of 6 non-overlapping age groups as well as the high risk129

population) collected by the Kaiser Family Foundation6.130

The whole dataset contains the daily confirmed cases (01/21/2020 – 12/08/2020) in the 51 states of131

the US. The data was split into a training set (01/21/2020 – 11/24/2020) and a test set (11/25/2020132

– 12/08/2020). Fifty states issued the restaurant policies, and 34 states issued the public mask133

policies. For each state, we fit a model using the train data starting from its pandemic start date to134

11/24/2020. The pandemic start date of a state is decided in the way discussed in Section A.1. The135

only hyper-parameter of the model is ∆t, which is related to the incubation time of COVID-19 and136

the efficiency of a state’s healthcare system. The typical incubation period for COVID-19 is around137

14 days according to the CDC. Since there were delays in taking tests and reporting cases, we limited138

∆t to between 15 and 20, and applied ten-fold cross-validation using the training data to determine139

the optimal ∆t of each state. In the test phase, we first smoothed the predicted transmission rate,140

log r̂t, by taking an exponential moving average on the previous 3 days. Then we conduct the141

calibration step (see Section A.3) using the data between 11/18/2020 and 11/24/2020.142

3.2 PREDICTION EVALUATION METRICS143

We evaluate the prediction performance based on normalized RMSE (nRMSE):

nRMSE =
RMSE(log D̂[tp: tp+m], logD[tp: tp+m])

Median(logD[tp: tp+m])

where the prediction period is [tp, tp+m],m is set to be no more than 14 in this work, logD[tp: tp+k]

indicates the logarithm of the daily confirmed cases between tp and tp+m, and log D̂[tp: te+m] indi-
cates the logarithm of the predicted daily confirmed cases. nRMSE estimates the relative deviation
from the the local COVID-19 trend. A value of 0.01 represents the average prediction deviates 1%
from the true local trend in a logarithmic scale. We also report the relative accumulated log error
(RALE) of cases during [tp, tp +m]:

RALE =
|
∑

(log D̂[tp: tp+m] − logD[tp: tp+m])|∑
(logD[tp: tp+m])

RALE captures the relative deviation from the accumulated cases within m days. A value of 0.01144

represents the predictive cases deviates 1% from the true cases within m days in a logarithmic scale.145

2https://data.bts.gov/Research-and-Statistics/Trips-by-Distance/
w96p-f2qv

3https://www.nytimes.com/interactive/2020/us/states-reopen-map-coronavirus.
html

4https://www.census.gov
5https://covidtracking.com
6https://www.kff.org/other/state-indicator/distribution-by-age/

?currentTimeframe=0&sortModel=%7B%22colId%22:%22Location%22,%22sort%22:
%22asc%22%7D%23notes
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(a) nRMSE (b) RALE (c) Heatmap of nRMSE.

Figure 2: The summary of the 3-, 7-, 10- and 14-day state-level forecasting performance. (a) The
state-level nRMSE values. (b) The state-level RALE values. (c) The geographic heatmap of the
14-day forecasting nRMSE.

3.2.1 SUMMARY OF THE PREDICTION PERFORMANCE146

We ran our approach to make the 3-, 7-, 10- and 14-day predictions in all states. The results are147

summarized in Figure 2 with details in Table 2. The median nRMSE for 14-day forecasting is 0.035148

(i.e., the prediction deviates ≈3.5% from the real local trend at a logarithmic scale). Most nRMSEs149

of the 14-day forecasting results are within 0.05, indicating that our model works well for most150

states in the US. The RALE results show a similar trend. We observe that both nRMSE and RALS151

increase slightly with the forecasting time extends. For instance, the median values of the 3- and152

14-day nRMSEs are 0.027 and 0.035, respectively. Figure 3 visualizes the 14-day predictions (both153

the transmission rates and the daily confirmed cases) of two states, NY (nRMSE = 0.0105, RALE154

= 0.0036) and LA (nRMSE = 0.0755, RALE = 0.0710). The prediction results on NY and LA are155

among the best and worst, respectively.156

We should point out that a large nRMSE or RALE may indicate large volatility in the confirmed157

daily cases due to delay in reporting, rather than the weak performance of the corresponding model.158

Figure 10 shows four representative states that contain significant volatilities in daily confirmed159

cases in or after the forecasting period (11/25/2020 – 12/08/2020). However, their overall future160

trends match our forecasting curves very well.161

3.3 SIGNIFICANT FACTORS IN PREDICTING COVID-19 TREND162

The predictors have different levels of effects on COVID-19 trend prediction across the US (see163

Figure 4b-f, with more details in Figure 8). Using 0.05 as the p-value cutoff, we observed several164

factors are frequently identified as significant across the states (Figure 4a). Mask Policy has the165

highest frequency of 0.7647 (26 out of 34 states that issued the mask policy), indicating that the166

mask policy has the most impact on the change of epidemic dynamics. The estimated coefficients167

of Mask Policy and three other significant factors (Restaurant Policy, Stay-at-home and Dis-0-1) are168

negative in nearly all cases (Appendix B), which indicates these factors help hamper the spread of169

COVID-19. This is consistent with how people and governments fight against COVID-19: wearing170

masks, closing restaurants and staying at home. Mobility categories Dis-1-3 and Dis>500 also have171

general impacts. However, their estimated coefficients are positive in most cases, indicating that172

they help promote the spread of COVID-19. We suspect that Dis-1-3 may correspond to walking173

within local communities and that Dis>500 mostly represents cross-state travels.174

Interestingly, other mobility categories become significant for a few states. For example, the long175

distance mobility categories (Dis-250-500 and Dis>500) are both significant in regression for states176

NV and MT. This might be explained by the low population densities in those states. There may be177

other very complex interactions between mobility and demographic properties, which we leave for178

future exploration.179

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.04.21249218doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.04.21249218
http://creativecommons.org/licenses/by-nc-nd/4.0/


Preprint.

Figure 3: The 14-day predictions of the COVID-19 transmission rates and daily cases in NY
(nRMSE = 0.0105, RALE = 0.0036) and LA (nRMSE = 0.0755, RALE = 0.0710) in logarith-
mic scale. All x-axis indicate time. The y-axes in the top plots indicate the logarithm of the daily
confirmed cases. The y-axes in the bottom plots indicate the transmission rate values. The yellow
dash vertical lines indicate the starting points of the prediction periods. The blowouts highlight the
predictions. The red shaded areas indicate the 95% confidence intervals.

(a) Frequency of significant factors (b) Mask Policy (c) Restaurant Policy

(d) Stay-at-home (e) Dis-0-1 (f) Dis > 500

Figure 4: (a) Frequency of each factor identified to be significant within states. Factor with high
frequency implies its general influences on most states. (b)–(f) Heatmaps of each factor’s p-values.
Here a state is colored grey if it doesn’t incorporate such factor into regression. Remaining results
are also reported in Figure 8 in the Appendix.

3.4 DEMOGRAPHIC INTERPRETATION OF THE STATE-LEVEL BIASES IN COVID-19180

TRANSMISSION181

We trained one daily case prediction model for each state (including the DC) and obtained 51 models182

in total. Notice that the intercept term in each model represents the baseline transmission rate of the183

corresponding state. We hypothesized that the differences in the baseline transmission rates were184

due to the state-level demographics (e.g., population density, age structure, race structure, etc.).185
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Figure 5: Daily transmission rate is estimated by time-dependent mobility variables as well as cate-
gorical variables for policies. Then daily cases are predicted from previous transmission rates. The
biased term (intercept) from the regression model is the baseline transmission rate under normal
mobility and conditions before the pandemic. The baseline rate is highly related to each state’s
demographics.

To investigate this, we used lasso (Tibshirani, 1996) to select four demographic variables highly186

related to the state-level model biases, which include Top Density7 (p-value = 0.0293), Adults-35-54187

(p-value = 0.1003), Hispanic-Or-Latino (p-value = 0.0112) and AmericanIndian-Or-AlaskaNative188

(p-value = 0.1507). We then used them to reconstruct the baseline transmission rates using non-189

regularized linear regression (see Table 1 and Figure 5). Our findings resonate with the findings in190

previous works that the spread of COVID-19 were highly relevant to population densities (Rocklöv191

& Sjödin, 2020) and ethnic minorities (Dyer, 2020; Kirby, 2020), and hence aid in understanding192

the spread of COVID-19 and increase the interpretability of our model.193

4 CONCLUSIONS194

In this paper, we propose a data-driven approach that trains regression models for forecasting the195

state-level COVID-19 daily transmission rates using the state-level mobility data and restrictive196

policies. The transmission rates can then be used to estimate the daily confirmed cases in an accu-197

mulated manner. Our approach uses a calibration step to adjust for short-term changes in population198

behaviors. Our empirical study results show that the proposed approach can reliably and accurately199

forecast (2 weeks ahead) the state-level COVID-19 spread. We also studied statistically significant200

factors as well as their impacts on the COVID-19 pandemic, and the findings allow us to better201

understand how population mobility and government policies may affect the spread of COVID-19.202

Our prediction results can be used by local governments or healthcare systems to prepare ahead,203

and the discovered quantitative relationships between COVID-19 and population mobility as well as204

policies can be used to by policymakers in devising customized response strategies.205

CODE AND DATA AVAILABILITY206

Our codes and the data used in this work are available on GitHub at https://github.com/207

yifeiwang15/COVID-19-Mobility.208
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A METHODS298

A.1 DATA AND PREPROCESSING299

COVID-19 daily case data. The COVID-19 data used in this work is the US state-level daily300

confirmed cases, denoted as Dt where t is date. The data is very noisy, especially in the beginning301

of the pandemic, due to various reasons, such as, delay in reporting, and so on. We performed the302

following preprocessing. For each state, we first detected the pandemic start time ts as the first day303

of the first three consecutive days with non-zero daily confirmed cases. We then smoothed Dt after304
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ts by taking a moving median using a sliding window of size 7 followed by a moving average using305

a sliding window of size 5. In the rest of the paper, Dt refers to the preprocessed daily cases.306

Mobility data. The state-level travel statistics are daily aggregates of residents’ movements based307

on their mobile phone data, and provide information about population mobility. A trip was counted308

if a person stayed away from home for more than 10 minutes. The daily trips were grouped into309

11 categories based on their travel distances (see Figure 6 for an example). For instance, the Dis-310

5-10 category indicates the number of trips within the range of 5-10 miles. The Staying-at-home311

category records the size of the population that did not stay away from home for more than 10312

minutes. In each state, the Staying-at-home category data was normalized by the state population,313

and other categories were normalized by the state population not staying at home. Each category314

is then standardized to represent the relative changes in mobility from the pre-pandemic level. This315

was done by subtracting the median pre-pandemic mobility value and then dividing the maximal316

pre-pandemic mobility value.317

There exists abnormal activities across the US around the later summer 2020 when schools start and318

in early November 2020 when the election was held. These sudden irregular travel patterns were as-319

sociated with distinct yet unknown population behaviors. We suspect that the subpopulation, which320

exerted the abnormal travel patterns, deployed special the required protection/quarantine means and321

hence contributed little to the spread of COVID-19. Hence, the corresponding mobility data should322

not be used without appropriate processing in training the models and making predictions. To this323

end, we detected outliers as samples more than three scaled median absolute deviations away from324

the median. Then, we conducted Principal Component Analysis on the training data and recon-325

structed the detected outliers with the first 4 principle components. Figure 7 shows an example of326

outlier detection and reconstruction in the mobility data category Dis > 500 of the New York and327

California states.328

State restriction policy. We considered the state-level mask wearing policy and restaurant opening329

policy as two binary variables. If a policy is instated, the value of its variable is 1, otherwise 0.330

Demographic information. The following state-level demographic information, which was also331

used in Yang et al. (2020a): (i) local population density, (ii) local age structure (non-overlapping age332

groups), (iii) local race structure (different race categories).333

A.2 REGRESSION MODEL FOR EPIDEMIC PREDICTION334

The epidemic transmission rate in each state at time t is defined as the ratio between the state-level335

confirmed daily cases at t and that at t− 1, i.e., rt = Dt/Dt−1, where Dt is the number of the daily336

confirmed cases at time t. The transmission rate rt can be algebraically mapped to the reproduction337

number in epidemiology (Fan et al., 2020). Assuming no auto-correlation in transmission rates, we338

first use a robust linear regression technique (Holland & Welsch, 1977) to estimate the logarithm of339

the state-level transmission rate (i.e., log r̂t+∆t) using the mobility statistics and policies at time t,340

where the hyper-parameter ∆t specifies how far in the future a prediction is made and its optimal341

value can be adjusted using ten-fold cross-validation. Assuming prediction starts at time tp, the342

logarithm of the predicted daily cases D̂t+m, where m ≤ ∆t, can be derived using the estimated343

transmission rates as follows:344

log D̂tp+m = logDtp−1 +
m∑

k=1

log r̂t+k (1)

where Dtp−1 is the ground-truth number of the daily cases at time tp − 1.345

A.3 CALIBRATING THE FORECAST346

The above regression model assumes stationary relationships between the transmission rate variable347

and the predictors (i.e., population mobility and policies), which is not necessarily true in reality. For348

example, it is well known that population behaviors (e.g., awareness of conditions relating to public349

health, compliance to policies, etc.) vary over time, which can contribute to changes in transmission350

rates. Moreover, the reporting error associated with the daily confirmed cases (i.e., Dtp−1 in eq.351

1) and the accumulated prediction error in r̂t+k can degenerate the predictions of the daily cases.352
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Hence, we introduce a calibration step that uses the data in a short window immediately preceding353

the forecast window (see Figure 1) to make adjustments. This step makes a reasonable assumption354

that the relationships between the transmission rate variable and its predictors remain unchanged355

over a short time period composed of the calibration and forecast windows. Assume prediction356

should start at time tp, we use the time window [tp−k, tp−1] to linearly calibrate the model trained357

by using the data up to tp−1 as358

log D̃tc = a

tc∑
m=tp−k

log r̂m + b+ logDtp−k−1 (2)

where tc ∈ [tp−k, tp−1], r̂m is the output of the pre-calibrated model, and a & b are two calibration359

parameters. The hyper-parameter k controls the attention span of the calibration step. A small k360

direct the calibration step to focus on short-term epidemic trends, and vice versa. The parameter a361

accounts for the time-changing relationship between the transmission rate and its predictors, and b362

accounts for both the uncertainty associated with Dtp−k−1 and the error in forecasting rt. These363

two parameters can be solved by optimizing364

a∗, b∗ = argmin
a,b

tp−1∑
tc=tp−k

[log D̃tc − logDtc ]2

s.t. |a− 1| ≤ δ

(3)

where δ > 0 controls the maximal scaling effect to prevent numerical instability in estimating365

a∗ due to the large uncertainties associated with reports of daily cases. We set δ = 0.01 in our366

experiments. After calibration, the prediction at t ≥ tp should be calculated as log D̂t = log D̃tp−1
+367

a
∑t

m=tp
log r̂m, where r̂m is the ∆t-step-ahead prediction made by the pre-calibrated model.368
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B ADDITIONAL RESULTS369

Figure 6: The normalized mobility data of the New York state. There are 11 categories based on the
travel distances. The normalization procedure is explained in Section A.1.

Figure 7: There is a national spike of long-distance travels (the Dis>500 mobility category) in mid-
August, which might be associated with the starts of schools/universities. The data of two states (NY
and CA) are shown as examples. The abnormal mobility samples are ”corrected” using Principal
Component Analysis as described in Section A.1.

Table 1: Regression Table on baseline transmission rates

Estimate SE tStat pValue

(Intercept)* 0.63678 0.20508 3.1051 0.0032527
Top-density 0.013506 0.006005 2.2492 0.029331
Adults-35-54 1.4687 0.8757 1.6771 0.1003
Hispanic-Or-Latino 0.21254 0.080443 2.6421 0.011223
AmericanIndian-Or-AlaskaNative -0.21076 0.14421 -1.4614 0.1507
* This is the intercept of regression on demographics.

Number of observations: 51, Error degrees of freedom: 46
Root Mean Squared Error: 0.0519
R-squared: 0.421, Adjusted R-Squared: 0.391
F-statistic vs. constant model: 5.34, p-value = 1.83e-05

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.04.21249218doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.04.21249218
http://creativecommons.org/licenses/by-nc-nd/4.0/


Preprint.

(a) Dis-1-3 (b) Dis-3-5 (c) Dis-5-10

(d) Dis-10-25 (e) Dis-25-50 (f) Dis-50-100

(g) Dis-100-250 (h) Dis-250-500

Figure 8: The regression p-value heatmaps of the mobility data categories.

Figure 9: The most generic significant factors identified by our approach (see Figure 4(a)) as well
as their descriptive statistics of estimated coefficients, according to 51 state-level regression models.
Only coefficients with significant level of 0.05 are included in the box plot. The coefficients of
Mask Policy, Restaurant Policy, Stay-at-home and Dis-0-1 almost take negative values, showing
stable negative correlations with the transmissions rates and indicating that they help prevent the
spread of COVID-19. In contrast, the coefficients of Dis-1-3 and Dis>500 almost take positive
values, showing stable positive correlations with the transmissions rates and indicating that frequent
short-distance travels and cross-state travels help promote the spread.
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Figure 10: Two representative cases show that the trained models can forecast the trends very well
even though they have relatively large prediction nRMSE and RALE: MA (nRMSE = 0.0394, RALE
= 0.0253) and CT (nRMSE = 0.1353, RALE = 0.1216). These large nRMSE/RALE values are due
to the delays or skips in reporting the COVID-19 daily confirmed cases by the corresponding states.
These results indeed indicate the robustness and reliability of our approach. The x-axis indicate
time. The y-axes indicate the logarithm of the daily confirmed cases. The yellow dash vertical lines
indicate the starts of the prediction periods. The blowouts highlight the predictions. The red shaded
areas indicate the 95% confidence intervals.
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Table 2: The nRMSE and RALE values of the 3-, 7-, 10-, 14-day state-level predictions.

nRMSE RALE
State 3 days 7 days 10 days 14 days 3 days 7 days 10 days 14 days
AK 0.0043 0.0074 0.0067 0.0112 0.0036 0.0066 0.0060 0.0092
AL 0.0289 0.0282 0.0235 0.0212 0.0284 0.0271 0.0204 0.0187
AR 0.0433 0.0410 0.0345 0.0294 0.0422 0.0390 0.0246 0.0139
AZ 0.0104 0.0217 0.0301 0.0352 0.0068 0.0180 0.0256 0.0314
CA 0.0042 0.0062 0.0179 0.0278 0.0041 0.0005 0.0095 0.0192
CO 0.0665 0.0831 0.0943 0.1108 0.0662 0.0817 0.0920 0.1069
CT 0.1779 0.1219 0.1041 0.1353 0.1766 0.1131 0.0978 0.1216
DC 0.0028 0.0135 0.0470 0.0800 0.0028 0.0028 0.0256 0.0549
DE 0.0253 0.0273 0.0294 0.0340 0.0253 0.0272 0.0290 0.0331
FL 0.0192 0.0181 0.0169 0.0224 0.0187 0.0175 0.0162 0.0208
GA 0.0298 0.0255 0.0317 0.0396 0.0293 0.0203 0.0014 0.0150
HI 0.0306 0.0505 0.0486 0.0417 0.0284 0.0468 0.0459 0.0380
IA 0.0706 0.0865 0.0933 0.1139 0.0698 0.0851 0.0918 0.1096
ID 0.0110 0.0079 0.0084 0.0087 0.0110 0.0069 0.0021 0.0009
IL 0.0287 0.0326 0.0296 0.0282 0.0281 0.0320 0.0288 0.0275
IN 0.0365 0.0450 0.0460 0.0492 0.0359 0.0441 0.0453 0.0484
KS 0.0534 0.0424 0.0446 0.0399 0.0529 0.0365 0.0103 0.0048
KY 0.0089 0.0164 0.0202 0.0193 0.0080 0.0075 0.0134 0.0143
LA 0.1211 0.0977 0.0820 0.0755 0.1208 0.0938 0.0758 0.0710
MA 0.0157 0.0158 0.0318 0.0394 0.0155 0.0028 0.0135 0.0253
MD 0.0149 0.0159 0.0134 0.0116 0.0148 0.0156 0.0115 0.0067
ME 0.0153 0.0147 0.0201 0.0305 0.0152 0.0146 0.0187 0.0267
MI 0.0213 0.0178 0.0193 0.0208 0.0211 0.0174 0.0189 0.0204
MN 0.0310 0.0470 0.0596 0.0771 0.0308 0.0448 0.0559 0.0710
MO 0.0463 0.0534 0.0526 0.0536 0.0457 0.0528 0.0522 0.0533
MS 0.0153 0.0202 0.0298 0.0326 0.0134 0.0066 0.0181 0.0241
MT 0.0242 0.0263 0.0332 0.0411 0.0241 0.0260 0.0320 0.0390
NC 0.0146 0.0212 0.0187 0.0159 0.0137 0.0201 0.0168 0.0133
ND 0.0231 0.0260 0.0332 0.0364 0.0231 0.0256 0.0318 0.0348
NE 0.0314 0.0412 0.0515 0.0810 0.0310 0.0402 0.0487 0.0714
NH 0.0271 0.0189 0.0157 0.0143 0.0266 0.0166 0.0121 0.0055
NJ 0.0260 0.0331 0.0331 0.0322 0.0257 0.0324 0.0325 0.0317

NM 0.0089 0.0206 0.0225 0.0294 0.0069 0.0177 0.0203 0.0262
NV 0.0159 0.0240 0.0286 0.0338 0.0155 0.0228 0.0271 0.0319
NY 0.0090 0.0072 0.0102 0.0105 0.0090 0.0053 0.0007 0.0036
OH 0.0322 0.0417 0.0448 0.0480 0.0319 0.0408 0.0439 0.0470
OK 0.0303 0.0530 0.0546 0.0518 0.0279 0.0488 0.0516 0.0497
OR 0.0058 0.0142 0.0148 0.0132 0.0049 0.0123 0.0134 0.0116
PA 0.0423 0.0512 0.0519 0.0525 0.0420 0.0504 0.0511 0.0518
RI 0.0592 0.0551 0.0596 0.1206 0.0591 0.0549 0.0592 0.0992
SC 0.0097 0.0098 0.0275 0.0484 0.0093 0.0020 0.0126 0.0315
SD 0.0660 0.0839 0.0900 0.1130 0.0649 0.0820 0.0883 0.1075
TN 0.0160 0.0156 0.0144 0.0127 0.0160 0.0155 0.0143 0.0120
TX 0.0278 0.0241 0.0229 0.0264 0.0278 0.0239 0.0228 0.0257
UT 0.0423 0.0332 0.0299 0.0281 0.0423 0.0290 0.0140 0.0029
VA 0.0042 0.0157 0.0148 0.0172 0.0011 0.0119 0.0111 0.0017
VT 0.0635 0.0589 0.0605 0.0747 0.0632 0.0549 0.0199 0.0165
WA 0.0073 0.0058 0.0076 0.0177 0.0071 0.0018 0.0019 0.0098
WI 0.0328 0.0403 0.0418 0.0423 0.0325 0.0397 0.0412 0.0418
WV 0.0439 0.0485 0.0508 0.0535 0.0434 0.0480 0.0503 0.0531
WY 0.0681 0.0933 0.1049 0.1285 0.0671 0.0902 0.1014 0.1224

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.04.21249218doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.04.21249218
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Related work
	Results
	State-level Epidemic Forecasting Model
	Prediction evaluation metrics
	Summary of the prediction performance

	Significant factors in predicting COVID-19 trend
	Demographic interpretation of the state-level biases in COVID-19 transmission

	Conclusions
	Methods
	Data and preprocessing
	Regression model for epidemic prediction
	Calibrating the forecast

	Additional results

